
Figure and Table Captions

Figure 1: Schematic diagram of the Bridgman apparatus.

Table 1: Nomenclature. Note all listed variables are non-dimensionalized.

Table 2: Relation of non-standard symbols with more common notation in Literature.
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can be found in closed form. We �nd (Z0
6 ; Z

0
7 ; Z

0
8 ) = (0; 0; 0),

(Z0
3 ; Z

0
4 ; Z

0
5) =

 
�1

2
+ i

p
3

6
; 1;�1

2
� i

p
3

6

!
�3e

��n(z0�zI): (C28)

Once this is found, it is clear that

(Z0
1 ; Z

0
2 ) = �

2m2�3e
��n(z0�zI)

(p1 +m1 �m2)� e(p1�p2)(z2�z0)(p2 +m1 �m2))

�
1;�ep1(z2�z0)

�
: (C29)
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each of R1 and R2 are O(Rc=RT ; 

�6), while R3 and R4 are O(


�1), and O(
�2) respectively.

All other components are O(
�3 or smaller. This means that for j = 1; 2,


e�Wj(zII)
8X

k=1

Hj;kRk = e�Wj(zII) �O
�

�5�2nRc; 


�5
�
; (C16)

and so

Pl = e�p2(zII�z0) �O
�

�5�2nRc; 


�5
�

for l = 1; 2; 3; 4 : (C17)

Pl = ep1(z2�zII) �O
�

�5�2nRc; 


�5
�

for l = 5; 6; 7; 8 : (C18)

Further, we notice that in (186) in the terms beside Pl, all except S3 are O(
�5Rc; 

�1) =

o(1), where as S3 contains a term that scales as e��n(z0�zI ) which will dominate every other

term for �n = O(1) and z0 � zI = O(1). Thus, to the leading order

S � S0 = ��1n �3e
��n(z0�zI)(0; 0; 1; 0; 0; 0; 0) (C19)

Here we comment that even if we were not to ignore the contribution to Sl for l � 5

on the grounds that z0 � zI is large and therefore e��n(z0�zI ) small, it would not a�ect our

leading order results for Z1, Z3 through Z5 because of the the special structure of the reduced

matrix M in this limit. Therefore, the results quoted in (209) and (210) would equally be

valid in this case since the contribution of Z2, Z6 through Z8 for interfacial properties an(z0)

and bn(z0) (given by (199) and (200)) are exponentially small.

Now, consider simpli�cation of the matrix M , whose elements are shown in (189)-(198).

We notice that

M � M0 +O(
�1; 
�5�2nRc) ; (C20)

where the only nonzero elements of M0 are

M0
k;j = !k�1

j for k = 1; 2 j = 3; 4; 5 ; (C21)

M0
3;j = ���1n !�1j ; (C22)

M0
4;1 = �p1 �m1 +m2 ;M

0
4;2 = ep2(z0�z2) (�p2 �m1 +m2) ;M

0
4;j = �m2!

�2
j for j = 3; 4; 5 ;

(C23)

M0
5;1 = ep1(z2�z0) ; M0

5;2 = 1 ; M0
5;j = �!�2j for j = 6; 7; 8 ; (C24)

M6;j = 1 and M7;j = !j for j = 6; 7; 8 ; (C25)

M0
8;1 = �ep1(z2�z0) ; M0

8;2 = �1 : (C26)

The solution to

M0Z0 = S0 (C27)
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So, when the �rst two components of the vector identity (C4) is written long hand, we get

X l
1 +X l

2 =
8X

j=3


�5L3[
j]X
l
j + �l;1 = 
�5

4X
k=0

rk

8X
j=3


kjX
l
j + �l;1; (C7)

p1X
l
1 + p2X

l
2 =

8X
j=3


�5
jL3[
j]X
l
j + �l;2 = 
�5

4X
k=0

rk

8X
j=3



(

jk + 1)X l
j + �l;2 ; (C8)

where �k;j is the usual Kronecker delta symbol. From the (k + 3)-rd element of the vector

identity, with k ranging from 0 to 5, it follows that

8X
j=3


kjX
l
j = � 1


D

2X
j=1

pk+1
j X l

j + �k;l�3 (C9)

Using this in (C7) and (C9), we get

X l
1 +X l

2 = �
1

D
6

2X
j=1

pjL3[pj]X
l
j + 
�5rl�3 + �l;1; (C10)

p1X
l
1 + p2X

l
2 = � 1

D
6

2X
j=1

p2jL3[pj]X
l
j + 
�5rl�4 + �l;2: (C11)

from which it follows that

H0
1;l = X l

1 =

"
1 +

p1

D
6
L3[p1]

#
�1 "

p2�l;1 � �l;2

p2 � p1
+ 
�5

(p2rl�3 � rl�4)

(p2 � p1)

#
; (C12)

H0
2;l = X l

2 =

"
1 +

p2

D
6
L3[p2]

#
�1 "

p1�l;1 � �l;2

p1 � p2
+ 
�5

(p1rl�3 � rl�4)

(p1 � p2)

#
: (C13)

Now, let's consider the other elements H0
k;l for k � 3. Clearly, from (C9), it follows that

that for k ranging from 0 to 5,

8X
j=3


�k
kjH
0
j;l = �
�k�1D�1

2X
j=1

pk+1
j H0

j;l + �k;l�3 (C14)

Using the results (C12) and (C13), it is clear that the right hand side of (C14) is O(
�2) for

l = 1; 2 and O(1) for l = 3; 4; :::8. Since the coe�cient of each term on the left hand side of

(C14) is O(1) in the asymptotic limit 
 ! 1, it follows that

H0
j;l = O(
�2) for j = 1; 2 and H0

j;l = O(1) for j = 3; :::8 (C15)

Now, since from (174), (B12), (B30), (B31), (B34), anp and its �rst derivatives are

O(Rc=RT ; R
�1
T ), while cnp and its derivatives are O(R

�1
T ), it follows from (174) and (178) that
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Appendix C: Asymptotic evaluation of solution to MZ = S

The purpose of this Appendix is to carry out the asymptotic evaluation of solution to

(184) when RT >> 1 and �n = O(1). In this case, 
 de�ned by (147) is >> 1 and the

asymptotic relation (B159) for the roots 
j hold.

First, we consider the elements P1 through P8 that appear in the expression for S in

(186). Since for 1 � l � 4, the elements Ml;ke
�Wk(zII) scale as e�
j(zII�z0) for j = 6; 7; 8

and is therefore transcendentally small in RT . We ignore such terms in Pl. Similarly,

for 5 � l � 8, the elements Ml;ke
�Wk(zII) scale as e
j(z2�zII) for j = 3; 4; 5 and is

transcendentally small in RT . This leaves us with the contribution from terms multiplying

H1;j and H2;j in (187) and (188). Thus, it is necessary to calculate the �rst two rows of the

matrix H, which is the inverse of G.

First, consider the simpli�cation of the matrix G, whose elements are de�ned by (175),

(176), (179) and (180). On examination of (153)-(170), it is clear that

G � G0 +O
�
�2nRc


�5
�

; (C1)

where for k = 1; 2,

G0
k;j = pk�1j ; for j = 1; 2; G0

k;j = �


k�1j


2j � �2n
for j = 3; ::8 ; (C2)

while for k = 3; ::8,

G0
k;j =

p
(k�2)
j

D
(k�2)
for j = 1; 2; G0

k;j =

 

j




!(k�3)

for j = 3; ::8: (C3)

Now consider the problem of determining the the �rst two rows of H0 = G0�1

. This can

be conveniently done by �nding the �rst two components X l
1 and X

l
2 of the vector X

l that

satis�es

G0X l = El = (0; 0; 0; ; ; 1; ::0)T ; (C4)

the only nonzero element of El is a one at the l-th entry. It is convenient to de�ne symbols

rk so that

L3[y] = (y2 � �2n)
2 +

y

�
(y2 � �2n) =

4X
k=0

rky
k (C5)

Thus,

r0 = �4n ; r1 = �
�2n
�
; ; r2 = �2�2n ; r3 =

1

�
; r4 = 1: (C6)

Also, we de�ne rk = 0 for negative k. Notice that (158) implies that

1


2j � �2n
= 
�6L3[
j]
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Notice that it is necessary to retain all the terms in (B59) even when the �rst two terms

within the parentheses are clearly O(
6) while the remaining are O(
5) because there is

cancellation between there is cancellation these leading order terms because

(W 0
2

0j
� �2n)

3 � 
6 = �2n
Rc

D
h(z)

and this need not be larger than 
5. Relations (B43) with asymptotic behavior (B44) and

relations (B45)-(B53) replace the more restricted expression (B25) and (B26) when �2nRc is

O(
5) or larger, provided RT >> jRcj. The remaining expressions (B25), (B12) remain

valid. As far as an and bn, expressions (B57) and (B58) replace (B36)-(B37) and (B41)-(B42)

respectively, other expressions (B35), (B30), (B31), (B32), (B39) and (B40) still remain valid

as long as RT >> jRcj.
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W06 =
Z z

z2

[(�2nRT � �2n
Rc

D
h(z))

1
3 e�i2

�
3 + �2n]

1
2dz (B48)

W07 =
Z z

z2

[(�2nRT � �2n
Rc

D
h(z))

1
3 + �2n]

1
2dz (B49)

W08 =
Z z

z2

[(�2nRT � �2n
Rc

D
h(z))

1
3 ei2

�
3 + �2n]

1
2 dz (B50)

In the above, we proceed with the understanding that the principal argument is being used

in taking the squareroots and cube roots. W1j for 3 � j � 5 is determined by

W1j =
Z z

z0

W 0

1j
(z)dz (B51)

and W1j for 6 � j � 8 , is determined by

W1j =
Z z

z2

W 0

1j
(z)dz (B52)

where each W 0

1j
are determined in terms of the corresponding W 0

0j
through

W 0

1 = �
W 00

0

�
27(W 0

2

0 � �2n)
3
+ 24�2n(W

0
2

0 � �2n)
2
�
+
�

3

D
+ 1

�

�
W 0

0(W
0
2

0 � �2n)
3 � 3�2nRTW

0

0

D

6W 0

0(W
0
2

0 � �2n)
3

(B53)

Further, note that when RT >> jRcj with �4n << RT , these expressions reduce to

W 0

0j
� 
!j (B56)

in agreement with (B14). Thus, the expression (B43) is a generalization of the earlier

formulae for F c
j for j = 3; 4; ::8

Now consider, �nding F a
j for j = 3; 4::8. It is determined as a particular solution to

L1F
a
j = ��2nRTF

c
j (B57)

Through a standard dominant balance procedure, we obtain for j = 3; ::8,

F a
j � �
6eWj

(
1

W 0
2

j � �2n
� W 00

j

(W 0
2

j � �2n)
2
+ :::

)
(B58)

Since F b
j = �F a

j � L3F
c
j , it follows that for j = 3; 4; ::8,

F b
j �

�1
W 0

2

j � �2n

"
((W 0

2

j � �2n)
3 � 
6 � 2(W 0

2

j � �2n)
2W 00

j + 4W 0
2

j W
00

j (W
0
2

j � �2n) +
W 0

j

�
(W 0

2

j � �2n)
2

#

(B59)
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F b
j � �e
j(z�z2)
DL1[
̂j]


̂jL2[
̂j]
h(z) + :: for j = 6; 7; 8 (B42)

Now, we comment on the validity of the asymptotic behavior given so far. The behavior

of the particular solutions anp, bnp and cnp is clearly valid anytime jRcj << RT . This is

uniformly true for all �n. Further, expressions (B25), (B35) and (B40) is also consistent in

this regime for all �n. However, the expressions (B26) and (B27) do not remain valid when

j�2nRcj is the same order or larger than 
5, i.e. (�2nRT )
5=6. This is because from de�nition,

L1[
j]L3[
j] = �2nRT = 
6:

Thus, for large RT ,

L1[
̂j]L3[
̂j] = O(
5):

In order that the second term in (B26) and (B27) be smaller than the �rst term, it is necessary

that j�2nRcj << 
5. This is the origin of the restriction for the asymptotic behavior shown

thus far. Note that the condition �2njRcj << 
5 cannot be uniformly valid for all �n even

when jRcj << R
5=6
T .

B2. General form of Solution for jRcj << RT

In order to �nd uniformly valid expression for all �n and at the same time �nd expressions

valid for jRcj << RT , we �nd six independent solutions to the associated homogeneous

equation in (B1) in the WKB form. These solutions will replace the expressions (B26) and

(B27). Once this is found appropriate expressions can easily be found to replace (B36),(B37),

(B41) and (B42), which are also invalid in the general case.

We consider WKB solution of the form:

F c
j = eWj for j = 3; 4::; 8 (B43)

We will think of the relation (B43) as exact and relate the WKB approximate behavior

through the relation

Wj � W0j +W1j (B44)

We �nd that for RT >> 1, with jRT �Rcj >> 1, a uniformly valid expression for W0j is

given by the following expressions

W03 = �
Z z

z0

[(�2nRT � �2n
Rc

D
h(z))

1
3 ei2

�
3 + �2n]

1
2dz (B45)

W04 = �
Z z

z0

[(�2nRT � �2n
Rc

D
h(z))

1
3 + �2n]

1
2 dz (B46)

W05 = �
Z z

z0

[(�2nRT � �2n
Rc

D
h(z))

1
3 e�i2

�
3 + �2n]

1
2dz (B47)
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where

a0np = ��
5
n[�q1T 0 + q2]

�2nRT + �6n
� �5nq1T

00 RT

�[�2nRT + �6n]
2
; (B31)

and a1np is a particular solution of the form

a1np =
h
B̂2(z � z0) + B̂1

i
h(z) (B32)

that satis�es

L1a
1
np = ��2nRT c

1
np : (B33)

When RT >> �4n, the expression simpli�es so that

a1np � � �2nRch(z)

L2[�D�1]L1[�D�1]

"
L1[�D�1]c0np +

L1[�D�1]

L2[�D�1]
c0

0

np

#
: (B34)

Further,

F a
j � epj(z�z(2j�2))

"
1� Rcpjh(z)L1[p̂j] (�L2[p̂j]L3[p̂j ] +D�2nRT )

DRT p̂jL2[p̂j ] (L1[p̂j ]L3[p̂j]� �2nRT )
+ ::

!
for j = 1; 2 ;

(B35)

F a
j � � 
2


2j � �2n
e
j(z�z0)

"
1� Rcpjh(z)L1[
̂j] (�L2[
̂j ]L3[
̂j] +D�2nRT )

DRT 
̂jL2[
̂j] (L1[
̂j]L3[
̂j]� �2nRT )
+ ::

!
for j = 3; 4; 5 ;

(B36)

F a
j � � 
2


2j � �2n
e
j(z�z2)

"
1� Rcpjh(z)L1[
̂j] (�L2[
̂j ]L3[
̂j] +D�2nRT )

DRT 
̂jL2[
̂j] (L1[
̂j]L3[
̂j]� �2nRT )
+ ::

!
for j = 6; 7; 8 :

(B37)

Using bn = �L3cn � an, we can write

bn = bnp +
2X

j=1


4CjF
b
j + �2nRc


�1
8X

j=3

CjF
b
j ; (B38)

where

bnp = �L3[cnp]� anp : (B39)

Simpli�ed expressions are possible for RT >> �4n, which we do not care to write. The only

property that will be of importance in the analysis in section 6 is that bnp is this range of �n

is O(Rc=RT ; R
�1
T ), as is anp, which follows from (B30), (B31) and (B34).

Further, in the general case in (B38),

F b
j � epj(z�z(2j�2))

 
�pjL3[pj ]

D
6
� 1 � Rch(z)L1[p̂j]pj

RT
2L2[p̂j]p̂j
+ ::

!
for j = 1; 2 ; (B40)

F b
j � �e
j(z�z0)
DL1[
̂j]


̂jL2[
̂j]
h(z) + :: for j = 3; 4; 5 ; (B41)
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��2nRc

8X
j=3

AjL1[
̂j]f(z)e

j(z�z0)

L2[
̂j] fL1[
̂j]L3[
̂j]� �2nRTg
(B22)

where c1np is a particular solution of the form

c1np = (Â2(z � z0) + Â1)h(z)

that satis�es

L2

h
L1L3 � �2nRT

i
c1np = ��2nRcL1[hc

0
np]:

When RT >> �4n, the above asymptotes to

c1np � g(z)
Rc

RTL2[�D�1]

(
L1[�D�1]c0np �

2

D
c0

0

np +
L1[�D�1]c0

0

np

L2[�D�1]

)
(B23)

Thus, if we write

cn = cnp +
2X

j=1


�2CjF
c
j +

8X
j=3

CjF
c
j (B24)

as in (146), then

cnp � c0np + c1np + :: :

Note that in the special case RT << �4n, cnp and its derivatives are O(R�1T ), which follows

from (B12) and (B23). This scaling property is used in section 6. Further, in (B24),

F c
j � pj

D
epj(z�z2(j�1))

(
1� �2nRcL1[p̂j]h(z)

L2[p̂j] [L1[p̂j]L3[p̂j ]� �2nRT ]
+ ::

)
for j = 1; 2 ; (B25)

F c
j � e
j(z�z0)

(
1� �2nRcL1[
̂j]h(z)

L2[
̂j] [L1[
̂j]L3[
̂j]� �2nRT ]
+ ::

)
for j = 3; 4; 5 ; (B26)

F c
j � e
j(z�z2)

(
1� �2nRcL1[
̂j]h(z)

L2[
̂j] [L1[
̂j]L3[
̂j]� �2nRT ]
+ ::

)
for j = 6; 7; 8 ; (B27)

where we choose new arbitrary constants

C1 = 
5A1; C2 = 
5A2e
p2(z2�z0); Cj = 
5Aj for j = 3; 4; 5 Cj = 
5Aje


j(z2�z0) for j = 6; 7; 8

(B28)

Using (145a), we can solve for an once cn is known. Such a solution also needs to be consistent

with (144a). We �nd that

an � anp +
8X

j=1


�1CjF
a
j ; (B29)

where

anp � a0np + a1np + ::: ; (B30)
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p2 = � 1

2D
+

s
1

4D2
+ �2n (B10)

On solving (B4), we obtain,

c0n = c0np +
2X

j=1


�2Aje
pj(z�z0) +

8X
j=3

Aje

j(z�z0); (B11)

where

c0np =
�n[�q1T 0 + q2]

[�2nRT + �6n]
� �5nq1T

00

�[�2nRT + �6n]
2
; (B12)

and 
j are the six independent roots of

L3[
j]L1[
j]� �2nRT = 0 (B13)

that are labelled such that for RT >> �4n,


j � 
!j (B14)

where !j are the six roots of unity de�ned by

!3 = �ei�=3 = �!8 (B15)

!4 = �1 = �!7 (B16)

!5 = �e�i�=3 = �!6 (B17)

In order to �nd the next order correction in the asymptotic expansion

cn � c0n + c1n + ::: (B18)

we notice that c1n satis�es

L2

h
L1L3 � �2nRT

i
c1n = ��2nRcL1[hc

0
np]��2nRc


�2
2X

j=1

AjL1[p̂j]e
p̂j(z�z0)��2nRc

8X
j=3

AjL1[
̂j]e

̂j(z�z0);

(B19)

where

p̂j = pj �
1

D
; (B20)


̂j = 
j �
1

D
: (B21)

Then one can solve (B19) in a standard manner to �nd that

c1n = c1np � 
�2�2nRc

2X
j=1

AjL1[p̂j]f(z)e
pj(z�z0)

L2[p̂j ] fL1[p̂j ]L3[p̂j]� �2nRTg
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Appendix B: Derivation of the asymptotic form of approximate general solution

The purpose of this Appendix is to �nd approximate expression for cnp, anp, bnp, F
c
j , F

b
j

and F a
j appearing in (146)-(152) RT >> 1 with jRcj << RT .

It is possible to �nd uniformly valid asymptotic representation of the solution for all �n in

this limit. Nonetheless, this expression is too complicated and not very suitable for algebraic

manipulation when Rc << R
5=6
T . So, we �rst derive easier expressions for the asymptotic

behavior of the solution for RT >> 1 and �2njRcj << (�2nRT )
5=6

. Clearly, even when

jRcj << R
5=6
T , this condition is not uniformly valid for all �n. Thus, for large enough �n,

we have to use the more general expression; nonetheless, from the arguments in section 6,

we know that the detailed behavior of the solution for large �n is not necessary to conclude

that the contribution to the series (96)-(101) from large �n is indeed negligible and so the

behavior of the solution for jRcj < R
5=6
T can be deduced from the results in the following

subsection

B1. Subcase �2njRcj << 
5, RT >> 1

From (143), in the heat zone zII < z < z0, we have

h
L1L2L3 + �2nRcL1h(z)� �2nRTL2

i
cn = L2

h
��n(�q1T 0 + q2)

i
: (B1)

To the leading order, we expect

cn � c0n; (B2)

where c0n satis�es

h
L1L2L3 � �2nRTL2

i
cn = L2

h
��n(�q1T 0 + q2)

i
: (B3)

Thus, we can write

h
L1L3 � �2nRT

i
cn = ��n[�q1T 0 + q2] +

2X
j=1


�2
n
L1[pj]L3[pj]� �2nRT

o
Aje

pj(z�z0) (B4)

where A1, A2 are arbitrary constants and


 = �1=3n R
1=6
T (B5)

L1[y] = y2 � �2n (B6)

L2[y] = D[y2 � �2n] + y (B7)

L3[y] = (y2 � �2n)
2
+
y

�
(y2 � �2n) (B8)

p1 = � 1

2D
�
s

1

4D2
+ �2n (B9)
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�7 =
Ds�

�
kc0

0

(z0)� c0
0

s (z0)
�

D�(mc00(z0) + T 00)
: (A38)

Equations (A23) and (A30) form the e�ective boundary conditions on the melt variables

that incorporates all the the coupling between the variables on the solid and melt side.

39



where

�1 = � X1�sn22

�n�(n22n11 � n12n21)
(A24)

�2 =
X1�sn12

�n�(n22n11 � n12n21)
(A25)

�3 =
2�n�s

h
�G2 + asnp(0)e

��nzI �G1e
�2�nzI

i
� [1 � e�2�nz0 ]

(A26)

Using expressions for n11, n12, n21, n22, X1, G1 and G2 in the above and carrying out the

algebra, we get

�1 = ��s(T
00

s +mc0
0

(z0))(1 + e�2�nz0)

�(mc00(z0) + T 00)(1 � e�2�nz0)
; (A27)

�2 = � �sm�(T
00

s � T 00)(1 + e�2�nz0)

��(mc00(z0) + T 00)(1 � e�2�nz0)
(A28)

�3 = �
�s
n
(q1sT

0
s (zI)� q2s)(1 + e�2�nzI )� 2(q1sT

0
s (zI)� q2s)e

��nzI � q1s
�n
T 00

s (1 + e�2�nzI )
o

�[1� e�2�nz0]
;

(A29)

Using (124), (A14), (A22), we obtain another e�ective boundary condition for the melt

variables of the form

b0n(z0) +m1bn(z0) +m2an(z0) = 0; (A30)

where

m1 = �4 +X2�5; (A31)

m2 = �6 +X2�7 (A32)

In the above,

�4 = �k � 1

D
+
m
�
Ds

D
c0

00

s (z0) +
(k�1)

D
c0

0

(z0)� c0
00

(z0)
�

(T 00 +mc0
0(z0))

(A33)

�5 = � Dsn11

D(n11n22 � n12n21)
(A34)

�6 =
�
�
Ds

D
c0

00

s (z0) +
(k�1)

D
c0

0

(z0)� c0
00

(z0)
�

� (T 00 +mc00(z0))
(A35)

�7 =
Dsn21

D(n11n22 � n12n21)
(A36)

Using expressions for n11, n12, n21 and n22 in the above, the expressions for �5 and �7 simplify

to:

�5 = �
Ds

�
mc0

0

s (z0) + kT 00
�

D(mc00(z0) + T 00)
; (A37)
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where

X2 =
p3 � p4e

z0(p4�p3)

1� ez0(p4�p3)
; (A11)

where

p3 = � 1

2Ds

+

s
1

4D2
s

+ �2n; (A12)

p4 = � 1

2Ds

�
s

1

4D2
s

+ �2n: (A13)

From (120)-(122) (with d0 = 0), we can express

dn = �
asn(z0) +

m�
k�
bsn(z0)

T 00
s +mc0

0

s (z0)
= �

an(z0) +
m�
�
bn(z0)

T 00 +mc0
0

(z0)
: (A14)

Equation (120) then becomes

an(z0) = n11asn(z0) + n12bsn(z0); (A15)

where

n11 = 1� T 00

s � T 00

T 00
s + m

k
c00s (z0)

; (A16)

n12 = �
m�

h
T 00

s � T 00
i

k�
h
T 00
s + m

k
c0

0

s (z0)
i: (A17)

From (122) and (A14), we get

bn(z0) = n21asn(z0) + n22bsn(z0); (A18)

where

n21 =
�
h
c0

0

(z0)� 1

k
c0

0

s (z0)
i

�
h
T 00
s + m

k
c0

0

s (z0)
i ; (A19)

n22 =
1

k
+
m
h
c0

0

(z0)� 1

k
c0

0

s (z0)
i

k
h
T 00
s + m

k
c0

0

s (z0)
i : (A20)

Thus,

asn(z0) =
n22an(z0)� n12bn(z0)

n22n11 � n12n21
; (A21)

bsn(z0) =
�n21an(z0) + n11bn(z0)

n22n11 � n12n21
: (A22)

Further, from the simpli�cation of (123) into a0sn(z0) =
�
�s
a0n(z0) (due to linearity of T 0

s and

T 0) and (A7) and (A21), it follows that

a0n(z0)

�n
+ �1an + �2bn =

�3

�n
e��n(z0�zI); (A23)
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Appendix A: Derivation of e�ective interfacial boundary conditions

The purpose of this Appendix is to to derive e�ective boundary conditions on the melt

variables at z = z0 by using (105), (128), (118) and (119) together with the interfacial

conditions (120)-(124).

First, recalling that T 0
s is a linear function as in (35), it is clear from (128) that for

0 < z < zI ,

asn(z) = asnp(z) +B1e
�n(z�zI ) +B2e

��n(z�zI ); (A1)

where

asnp(z) = � 1

�n
[�q1sT 0

s + q2s]: (A2)

In the insulated zone zI < z < z0, on the other hand,

asn(z) = ~B1e
�n(z�zI ) + ~B2e

��n(z�zI ): (A3)

The continuity of asn and its �rst derivative at z = zI implies that each of ~B1 and ~B2 can

be expressed in terms of B1 and B2. Further, from (118), B2 can be solved in terms of B1.

Going through the algebra, we �nd the following expression for asn in the insulated zone

zI < z < z0:

asn(z) =
�
e�n(z�zI ) � e�2�nzIe��n(z�zI )

�
B1+G1e

�n(z�zI )+G2e
��n(z�zI )�asnp(0)e��nzIe��n(z�zI ); ;

(A4)

where

G1 =
1

2

"
asnp(zI) +

a0snp(zI)

�n

#
; (A5)

G2 =
1

2

"
asnp(zI)�

a0snp(zI)

�n

#
: (A6)

Using (A4) for asn(z0) and a
0

sn(z0) and eliminating B1 between them, we obtain

a0sn(z0)�X1asn(z0) = Y1 (A7)

where

X1 = �n
(1 + e�2�nz0)

(1� e�2�nz0)
(A8)

Y1 = 2�ne
��n(z0�zI)

n
�G2 + asnp(0)e

��nzI �G1e
�2�nzI

o
1 � e�2�nz0

: (A9)

Similarly, the linear homogeneous equation (105) with condition (119) can be solved in terms

of one arbitrary constant. By eliminating this constant between b0sn(z0) and bsn(z0), we �nd

b0sn(z0) �X2bsn(z0) = 0 (A10)
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nonlinear terms may be harder to satisfy in an experiment, even though there is a smaller

power of RT in the scaling compared to (237). This is so because there is no quenching factor

e��1(z0�zI ). However, because of the boundary layer structure of the solution, the interaction

of the interfacial properties at z = z0 with 
uid motion near z = zII or z = z2 is weak. This

suggests that one can have a highly nonlinear 
ow in the bulk of the melt, yet if the 
uid

Reynold number near z = z0 is not large, i.e. (237) holds, then the asymptotic results (222)

and (226) will also hold. In that case, it would be interesting to see if the condition (233)

can be implemented through appropriate design of the Bridgman apparatus.

Again, because of the boundary layer structure (i.e. exponential decay of the modes

away from the boundary) of this problem, as it would be true for any thermally or solu-

tally stabilized con�guration, introduction of nonlinearity, when important, is expected to

be mathematically manageable since by scaling the z� z0 by R1=6
T and using the scale infor-

mation on velocities, a nonlinear boundary layer equation with only a few parameters can be

formulated. Through appropriate matching with the linear solution in the nearly stagnant

core of the insulated zone, a global solution can presumably be constructed. This will be

subject of further investigation.
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has been already discussed, the remaining part of the scale factor, when written in more

common notation, as explained in Table 2 is given by

�s

�
R

1=3
T Re�1 Pr�1 rs e

��n(z0�zI ) (234)

for the horizontal velocity u. For the vertical 
uid velocity w + 1, the scale factor is:

�s

�
R

1=6
T Re�1 Pr�1 rs e

��n(z0�zI ) (235)

where �s
�

is the ratio of solid to melt di�usivities, Re is the Reynolds number, Pr is the

Prandtl number and the parameter rs is given by

rs =
�[q1sT

0
s (zI)� q2s]

T 00
(236)

Physically, rs is the ratio of the horizontal temperature gradient in the solid at r = 1, z = zI

to the vertical temperature gradient in the melt corresponding to the Tiller et al1 solution.

Note rs di�ers from rt due to an additional term in the denominator. The requirement (220)

for dropping nonlinear terms in the Navier-Stokes equation can be written as

�s

�
R

1=3
T Pr�1 rs e

��1(z0�zI ) << 1 (237)

However, we are of the belief that (237) is too stringent since within the boundary layer,

the extra z derivative in the Stokes operator part of the Navier-Stokes equation introduces

a factor that scales as R
1=6
T which only needs to be larger than the convective terms, whose

relative size is given by the left hand side of (237). This will have to be con�rmed by a

nonlinear analysis in the future. Nonetheless, it seems that through a safe choice of (z0�zI),
the requirement (236) could perhaps be met in experiment. Of course, z0 � zI cannot be

chosen arbitrarily large since large temperature gradients have to be maintained to avoid

supercooling.

Now, consider 
uid motion within the boundary layer around z = zII . The scale of the

horizontal velocity in (218) can also be written as

R
1=4
T Re�1 Pr�1 rm; (238)

where

rm =
�[q1T

0(zII)� q2]

T 00
(239)

is the ratio of the horizontal temperature gradient at r = 1, z = zII to the Tiller et al1

vertical temperature gradient in the melt. The vertical 
uid velocities in (219) is smaller

than the horizontal in this bounday layer by a factor of R
1=4
T , except near r = 1, where the


uid velocity components are of comparable magnitude. The requirement (221) for dropping
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condition (13b), the quantity �[q1sT
0
s (zI) � q2s] is the negative of the radial temperature

gradient in the solid at r = 1, z = zI . Thus, for a dilute alloy, the ratio

rt =
�[q1sT

0
s (zI)� q2s]

T 00 � ( 1
k
� 1)mc2=D

(232)

is approximately the ratio of the horizontal temperature gradients in the solid at r = 1,

z = zI to the vertical temperature gradient in the melt. Thus, �1 = rt(�s=�)R
�1=6
T , where

�s=� is the ratio of the thermal di�usivities between the solid and the melt.

Now consider the parameter �2. It is clearly the z derivative of the log of heat loss rate

at r = 1, z = zI . If dimensional coordinate ~z were used, it would be the product of cylinder

radius a and the logarithmic derivative with respect to ~z of the heat loss rate evaluated

at the edge of the insulation zone in the solid side. This is clearly a property that can be

controlled by appropriate design of the heat transfer properties of the Bridgman apparatus.

When most of the contribution of the series in each of (222), (226), (228) and (229), comes

from the n = 1 term, as is the case with an appropriately large value z0�zI , then the special

choice

�2 = �1 = 3:83 (233)

will have the e�ect of minimizing the interfacial slope, radial segregation as well as 
uid

velocities in the boundary layer near the interface. When �2 < 3:83, the interface slope in

(222) is positive, meaning that the interface will then be bulged towards the solid as reported

in previous numerical computations (Chang & Brown16 for instance).

The role of the parameter �3 as de�ned in (225), is more complex. For su�ciently

dilute alloys, clearly since c2 is small, �3 will be small. In that case, the term within the

curly parentheses in (222) reduces to unity and therefore in that case there is no explicit

dependence of the interfacial shape on the segregation coe�cient k or the Peclet number

D�1 except through �1 and z0 � zI .

Even in a general case, the explicit Peclet number 1=D dependence in (222) and (226) is

weak, except when Peclet number is comparable or larger than �1 = 3:83

We now discuss 
uid motion. As discussed earlier, vigorous 
uid motion is con�ned to

the boundary layers near z = z0, z = zII and z = z2 as well as near the side walls r = 1 for

z > zII. Elsewhere, the motion is O(1) in the bulk for z > zII and o(1) for z < zII

as gravity is increased. This qualitative feature appears to be in agreement with previous

numerical work.

We now discuss details of the motion within the R
�1=6
T boundary layer of the interface.

Here the scale of the horizontal and vertical 
uid velocities for the special case of section

6.1 are given by (228) and (229). Aside from the factor of (1 � �2=�n), whose signi�cance
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would make z0� zI (note z0 here is determined from (37) when St << �=z2) a moderately

large number, say 2, will ensure that e��n(z0�zI) is at best e�6:86, which is rather small.

Since �2 = 7:016 and other �n even larger, it is clear that under most such experimental

conditions, the dominant contribution to the series (214), (215), (222) and (226) will come

from the n = 1 term. The pro�le of each of the interface f(r) and concentration of solute

cs(r) will each look like J0(�1r). In this context, it is interesting to note that we found

that the numerically computed Chang & Brown16 interface for the largest thermal Rayleigh

number quoted in their paper is in good agreement with a J0(�1r) pro�le even when their

numerical calculations deal with the fully nonlinear 
ow. The coe�cients however could not

be matched as their boundary conditions at r = 1 is di�erent from ours. Comparison with

the Adornato-Brown17 pro�les is not as favorable, especially near r = 1, presumably due to

the absence of an ampoule in our analysis. Returning to relations (222), (226), it is clear

that if most of the contribution in the series comes from the �rst term, there will be an

approximate proportionality between the radial segration @cs
@r

(r; z0) and the interfacial slope

f 0(r) with the coe�cient of proportionality equal to

�(1� k)

D
c2

2
641� k

D
�

1
2D

+
q

1
4D2 + �21 � 1�k

D

�
3
75 : (230)

Earlier, Coriell & Sekerka22 hypothesized such a relation based on a purely di�usive calcula-

tion. Brattkus & Davis21, without any insulation zone, �nd no necessary relation. We �nd

here that with a proper insulation zone thickness, there is an approximate proportionality

between the two though the constant of proportionality in (230) is di�erent from Coriell &

Sererka22 by the appearance of the second term within the square parentheses. Since �1 is

fairly large, if the Peclet number 1

D
is not large, then it can be expected that in an approxi-

mate way, the second term within the square parentheses in (230) can be replaced by k
D�1

,

which can again be small for many materials. This may explain why Coriell & Sererka22 got

reasonable agreement with some experiment data.

Now, let us discuss the physical meaning of the scale parameter �1 that appears in both

(222) and (226). First note from (223) that �1 becomes large when

T 00 � (
1

k
� 1)mc2=D (231)

approaches zero. However, the term (231) is also present in the denominator of �3 in (225).

Thus, when the expression (231) approaches zero, both (222) and (226) approach a �nite

limit. However, the expression (231) has to be kept positive to avoid constitutional super-

cooling. Indeed, in the absence of capillarity, the condition for the onset of Mullins-Sererka

instability of the basic � = 0 state is that the expression in (231) is zero. From the boundary
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where

�4 =
k

D2
(1� k)c2; (227)

Each of (222) and (226) can readily be integrated with respect to r since the integral of

J1(�nr) is �J0(�nr)=�n. This readily gives expression for the interfacial shape f(r) and

concentration in the solid at the interface cs(z0; r).

We now turn to �nding simpli�ed expressions for the velocities near the R
�1=6
T boundary

layer at z = z0 for the simpli�ed case of this subsection. Using (214), (215) and simpli�ed

expression for �3, we obtain that each mode, i.e. coe�cient of J1(�nr) for the horizontal


uid velocity u scales as

�sR
1=3
T

�
4=3
n J0(�n)T 00

e��n(z0�zI )�[q1sT
0
s (zI)� q2s] [1�

�2

�n
]: (228)

The coe�cient of J0(�nr) in such a series representation for the vertical 
uid velocity w+ 1

scales as
�sR

1=6
T

�
2=3
n T 00

e��n(z0�zI )�[q1sT
0
s (zI)� q2s] [1�

�2

�n
]: (229)

7 Discussion of Results and Conclusion

This is a problem with many non-dimensional parameters, as seen in Table 1. It is interesting

to note that as RT ! 1, the leading order asymptotic behavior for the interfacial slope

and radial segregation contain far fewer parameters, as seen in (212) and (213). However, in

applying this formulae, it should be pointed out that the next order correction in the result

is O(Rc=RT ) or O(R
�1=3
T ), which ever is larger.

To the leading order, we �nd that the interfacial slope and radial segregation scale as

R
�1=6
T , when other parameters are held �xed. Thus, in qualitative agreement with numerical

results of Chang & Brown16, we �nd that moderately large gravity is worse than large gravity

when it comes to controlling interfacial slope and radial segregation.

To avoid a very detailed discussion of all the physical parameter dependence through m1,

m2 and �3, we now restrict ourselves to the special case in subsection 6.1. It appears that

most experiments satisfy the additional restriction placed in subsection 6.1 so there is not

much loss of generality in doing so.

The �rst notable observation is the crucial dependence of interfacial properties on the

quantity z0 � zI. This is so in the general case, where (212) and (213) hold, as well as in

the special case where (222), (226), (228) and (229) hold. Physically, z0 � zI is the ratio of

the distance of the interface from the end of the insulation zone in the solid to the radius

of the cylinder. Since the smallest �n is �1 = 3:83, it is clear that an arrangement that
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For the complete validity of our analysis, � needs to be small enough so that both conditions

(220) and (221) are met. In addition, we need that the interfacial slope, as given in (212),

is small. The latter does not limit � particularly since for larger gravity levels, as on earth,

this quantity is small for most experimental conditions without � being small.

Equations (212) and (213) are general results on interfacial deformation and radial seg-

regation that are valid whenever jRcj << R
5=6
T provided the constraints listed in table

(2) are satis�ed. However, this result is complicated by the dependence through e�ective

parameters �3, m1, m2, which in turn are complicated functions of other parameters. It is

therefore instructive to look at a special limit that is applicable to many experimental set

up.

6.1 Special case of Ds=z0 << 1 and �1(z2 � z0), �1zI , �1z0 >> 1

In this case, as mentioned in section 2, ci � 1

k
c2, c

00

s and its derivatives negligible at

z = z0, c
00(z0) � �( 1

k
� 1) c2

D
, c0

00

(z0) � ( 1
k
� 1) c2

D2 . Therefore, from (134)-(136),

�3 � ��s
�

�
(q1sT

0
s (zI)� q2s)�

q1s
�n

T 00

s

�

m1 � (1� k)

D
� m(1� k)c2

D2
�
T 00 � mc2

D
( 1
k
� 1)

� ;

m2 � � �(1� k)c2

�D2
�
T 00 � mc2

D
( 1
k
� 1)

� :
Thus, in this case the interfacial slope expression (212) reduces to

@f

@r
� �

1X
n=1

4J1(�nr)�1

�
1=3
n J0(�n)

"
1� �2

�n

#
e��n(z0�zI )

8<
:

1

2D
+
q

1

4D2 + �2n � 1�k
D

1

2D
+
q

1

4D2 + �2n � 1�k
D
� �3

9=
; ; (222)

where

�1 =
�s�[q1sT

0
s (zI)� q2s]

R
1=6
T �[T 00 � ( 1

k
� 1)mc2

D
]
; (223)

�2 =
q1sT

00

s

[q1sT
0
s (zI)� q2s]

; (224)

�3 =
�(1� k)c2(1� m�

�
)

�D2(T 00 � ( 1
k
� 1)mc2=D)

: (225)

The expression (213) for radial segregation in the crystal at the interface becomes

@cs

@r
(z0; r) � �c2

(1 � k)

D

@f

@r
�

1X
n=1

4J1(�nr)

�
1=3
n J0(�n)

e��n(z0�zI )
�4�1

h
1� �2

�n

i
( 1

2D
+
q

1

4D2 + �2n � 1�k
D
� �3)

;

(226)
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from (71) and (72), we conclude that there is a layer that extends downwards from z = zII

of thickness R
�1=4
T , where the radial velocity u scales as

��R
1=4
T [�q1T 0(zII) + q2]

T 00
(218)

and the vertical 
uid velocity, w + 1 away from r = 1 scales as

��[�q1T 0(zII) + q2]

T 00
(219)

Near the corner, where each of 1� r and z� zII is O(R�1=4T ), the vertical velocity also scales

as in (218), i.e. it is large as gravity e�ects become large. Similar arguments for z > zII

can be advanced to show that there is also a R
�1=4
T boundary layer that extends upwards

of z = zII where horizontal velocities scale as in (218) and vertical 
uid velocities scale as

(219). Within this R
�1=4
T layer around z = zII, there are convection rolls that can be deduced

from the r and z dependence in (217). We can put forward arguments near z = z2 as well

to show that there is a similar boundary layer where convection occurs.

Away from these boundary layers at z = z0, z = zII and z = z2, the horizontal and

vertical 
uid velocity components for z > zII scale as �

T 00 , as can be deduced from (98),

(108), (146) and (153). This stays O(1) as with increasing gravity e�ects. However, there is

in this case also a boundary layer near r = 1 of thickness R
�1=4
T where the vertical velocity

scales as
R
1=4

T
�

T 00 and therefore intensi�es with increasing gravity.

For z < zII , but away from boundary layers at z = zII and z = z0, it follows from (150)

and the behavior (155), (156) of F c
j for j = 3; :::8 that these only gives transcendentally small

contribution to cn. The only sizable contribution comes from possibly ~C1 and ~C2, which are

determined in (208). Thus, it follows that in this region, the 
uid velocity scales at best as
�

T 00R
1=6

T

and is reduced by increasing gravity. Unlike the core region for z > zII there is no

boundary layer in this case at the side walls near r = 1.

In order for our leading order analysis to be self consistent, it is not necessary that scaled


uid velocities u and w+1 be much smaller than unity. Indeed, we obtain the same leading

order result if the advection term ~v � r~v were totally dropped in (3). In order for us to be

able to linearize everywhere in the 
uid �eld, it is necessary that the Reynolds number based

on the largest 
uid velocity Ref << 1. Based on the estimates of the velocities in the

boundary layers at z = z0 and z = zII, this would require that each of

�R
1=3
T ��3e

��1(z0�zI)

�T 00
<< 1 (220)

�R
1=4
T �[�q1T 0(zII) + q2]

�T 00
<< 1 (221)

27



w + 1 �
1X
n=1

�R
1=6
T ��3e

��n(z0�zI)

�
2=3
n J0(�n)T 00

5X
j=3

Nje
�
1=3
n R

1=6

T
!j(z�z0)J0(�nr) (215)

where

N3 = �1 + i

p
3

3
; N4 = 2; N5 = �1� i

p
3

3

This gives a boundary layer at z = z0 where the 
uid velocity changes rapidly. Of course, the

numbers Nj are such that at the interface z = z0, each of these expressions reduce to u = 0,

w = �1. Note that the expressions (214) and (215) imply that the velocities change rapidly

within a boundary layer that scales as R
�1=6
T . Aside from the factor ��3, which generally

depends on n and the heat transfer parameters, it is easily seen that within the boundary

layer, the dimensionless horizontal velocity u scales approximately as
�R

1=3

T

T 00 e��1(z�z0), while

the vertical nondimensional 
uid velocity w+1 scales approximately as
�R

1=6

T

T 00 e��1(z�z0). The

form (214) and (215) suggests that there will be skinny convection cells within this boundary

layer. More detailed discussions on the parameter dependence of velocities will be taken up

in section 7.

Now, let's consider the neighborhood of z = zII , the end of the insulation zone in the

melt. We �rst consider z < zII. Since prior analysis shows that for j = 6; 7; 8, each of Zj

and therefore Cj is at best O(1), it follows that Cje
Wj(zII) is transcendentally small. Thus,

from (153), (174), (178), (183) and (C15), it follows that for j = 6; 7; 8,

eWj(zII) ~Cj �
8X

k=1

Hj;kRk � Hj;3

5cnp(zII)) � 
5Hj;3

�n[�q1T 0(zII) + q2]

�2nRT + �6n
; (216)

where to the leading order, it is known that Hj;3 = O(1). Further, since Zj for j = 3; 4; 5

turned out O(1) at best, it follows that for j = 3; 4; 5, ~Cje
Wj(zII) will be transcendentally

small. Thus, in the expression (150), for the stream function coe�cient, the leading order

contribution comes only from j = 6; 7; 8 when z < zII with jz � zIIj small enough to be

inside the boundary layer (actually an internal layer). It is clear from (150) that

cn �
8X

j=6

e
j(z�zII )Hj;3

5cnp(zII)) �

8X
j=6

Hj;3

�n[�q1T 0(zII) + q2]

�2nRT + �6n
e
j(z�zII)

Therefore, from (98) and (108),

� �
1X
n=1

J1(�nr)
2�n�RT �[�q1T 0(zII) + q2]

J0(�n)(�2nRT + �6n)T
00

8X
j=6

Hj;3 e

j(z�zII ) (217)

Here, unlike what happens near z = z0, most of the contribution to the summation occurs

when �n = O(R
1=4
T ) >> 1. In that case 
j determined from (158) scales as R

1=4
T and hence
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where the e�ective parameters �3, m1 and m2 are as de�ned in (134)-(136). From (199) and

(200) and the above asymptotic results,

an(z0) � �2
�1�3e��n(z0�zI)
"
1 +

m2[1� e(p1�p2)(z2�z0)]

[p1 +m1 �m2 � e(p1�p2)(z2�z0)(p2 +m1 �m2)]

#
(209)

bn(z0) � 2
�1�3e
��n(z0�zI)

m2[1� e(p1�p2)(z2�z0)]

[p1 +m1 �m2 � e(p1�p2)(z2�z0)(p2 +m1 �m2)]
(210)

From (201), we �nd

dn � 2�3

�1 e��n(z0�zI)

(T 00 +mc0
0

(z0))

2
41 + m2(1�m�

�
)
n
1� e(p1�p2)(z2�z0)

o
(p1 +m1 �m2 � (p2 +m1 �m2)e(p1�p2)(z2�z0))

3
5 (211)

From (202), (210) and (211), we can obtain asymptotic expression for bsn(z0) as well. From

(45), (101) and recalling that J 01(�n) = J0(�n), we get interfacial slope

f 0(r) �
1X
n=1

J1(�nr)

�
1=3
n J0(�n)

4��3

R
1=6
T (T 00 +mc0

0(z0))
e��n(z0�zI)

�
2
41 + m2(1 �m�

�
)
n
1� e(p1�p2)(z2�z0)

o
(p1 +m1 �m2 � (p2 +m1 �m2)e(p1�p2)(z2�z0))

3
5 : (212)

Notice that in putting an upper limit1 in the summation in (212), we have to go through

an intermediate analysis where we replace the upper limit by N1, where N1 >> 1 but

smaller than any power of RT since such a limitation is needed for the validity of (159)

used in deriving (207) and (208). The contribution to the summation for �n even larger

is transcendentally small, as argued earlier. Now since N1 is far larger than unity and the

series in (212) is convergent, the leading order asymptotics is indeed the same as with N1

replaced by1. From (44), (100) and (202), radial segregation in the solid at the interface is

@cs

@r
(r; z0) �

1X
n=1

J1(�nr)

�
1=3
n J0(�n)

4��3(kc
00(z0)� c0

0

s (z0))

R
1=6
T (T 00 +mc0

0(z0))
e��n(z0�zI)

�
2
41 + m2(1 �m�

�
)
n
1� e(p1�p2)(z2�z0)

o
(p1 +m1 �m2 � (p2 +m1 �m2)e(p1�p2)(z2�z0))

3
5

+
1X
n=1

J1(�nr)

�
1=3
n J0(�n)

4��3m2k�e
��n(z0�zI ) �

n
1� e(p1�p2)(z2�z0)

o
�R

1=6
T (p1 +m1 �m2 � (p2 +m1 �m2)e(p1�p2)(z2�z0))

(213)

Now, consider 
uid velocities in di�erent regions of the melt. By using (40), (41), (71),

(72), (98), (108), (150), (154)-(156), (182), (183), (185) and the asymptotic solution (207)-

(208) and simple identities of Bessel functions, we can write the asymptotic expressions for

radial and vertical 
uid velocities for jz � z0j = O(R
�1=6
T ) as

u � �
1X
n=1

�R
1=3
T ��3e

��n(z0�zI )

�
4=3
n J0(�n)T 00

5X
j=3

Nj!je
�
1=3
n R

1=6

T
!j(z�z0)J1(�nr) (214)
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increasing z from a value of 1 at z = z0. This is uniformly true for all �n. The decrease is at

least like O(e�
1
2

(z�z0)) Further, eWj for j = 6; 7; 8 decreases exponentially with decreasing z

from a value of 1 at z = z2 at a rate that is at least O(e�
1
2

(z2�z)). Thus, the elementsMk;j

for 1 � k � 4, 6 � j � 8 and for 5 � k � 8, 3 � j � 5 are O(e�
1
2

(z2�z0)), which is

exponentially small in RT . Further, if �n >> 1, it is clear from (157) that p1 � ��n and

p2 � �n and so Mk;2 for 1 � k � 4 and Mk;1 for 5 � k � 8 are each O(e��n(z2�z0)), which is

transcendentally small in �n. Thus, if �n or z2� z0 is of the order of some positive power of

RT , these terms will also be transcendentally small in RT . Further, using the growing and

decreasing properties of eWj , it is easy to see that the the elements Pl de�ned in (187), (188)

satisfy

Pl = O
�
e��n(zII�z0); e�

1
2

(zII�z0); e�




2
(z2�zII); e��n(z2�zII)

�
: (203)

Further, the term ��1n �3e
��n(z0�zI ) appearing in the third element of S in (186) is transcen-

dentally small in �n for large �n. Noticing the special structure of the reduced matrix M ,

obtained by ignoring transcendentally small elements in the limit of large �n and RT , it is

clear that the solution Z to (184) has components

Zj = O
�
e��n(zII�z0); e�

1
2

(zII�z0); e��n(z0�zI )

�
for j = 1; 3; 4; 5; (204)

Further, Z2 = O(1) and each Zj for j = 6; 7; 8 are at best O(1) and so

eW2(z0)

 
Z2 + e�W2(zII)


8X
l=1

H2;lRl

!
= O

�
e��n(zII�z0)

�
; (205)

eWj(z0)

 
Zj + e�Wj(zII)

8X
l=1

Hj;lRl

!
= O

�
e�



2
(zII�z0)

�
for j = 6; 7; 8: (206)

Thus, from (199)-(206), it follows that the e�ect of the insulation zone is to exponentially

quench the small scale components of the radial segregation and interfacial deformation,

which correspond to bsn(z0) and dn for large �n. Most of the contribution in the summations

(96)-(101) therefore comes from terms where �n = O(1).

In that case, the matrices G and M simplify further in the asymptotic limit RT >> 1.

As shown in appendix C, (184) can be solved in closed form in this asymptotic limit resulting

in (Z6; Z7; Z8) = o(1),

(Z3; Z4; Z5) �
 
�1

2
+ i

p
3

6
; 1;�1

2
� i

p
3

6

!
�3e

��n(z0�zI) (207)

(Z1; Z2) � � 2m2�3e
��n(z0�zI)

(p1 +m1 �m2)� e(p1�p2)(z2�z0)(p2 +m1 �m2))

�
1;�ep1(z2�z0)

�
; (208)
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M2;j = 
�3F c0

j (z0); for j = 1; 2 and M2;j = 
�1Fc0

j (z0) for j = 3; 4::; 8 (190)

M3;j = 
�1
h
��1n F a0

j + �1F
a
j + �2F

b
j

i
z0

for j = 1; 2; (191)

M3;j =
h

�1��1n F a0

j + 
�1�1F
a
j + �2�

2
nRc


�6F b
j

i
z0

for j = 3; 4::; 8 ; (192)

M4;j =
h
��1n F b0

j +m1F
b
j +m2F

b
j

i
z0

for j = 1; 2; (193)

M4;j =
�2nRc


5

h
F b0

j +m1F
b
j

i
z0
+m2F

a
j (z0) for j = 3; 4::; 8 ; (194)

M5;j = F a
j (z2) for j = 1; 2; ::8; (195)

M6;j = 
�2F c
j (z2); for j = 1; 2 and M6;j = Fc

j (z2) for j = 3; 4::; 8; (196)

M7;j = 
�3F c0

j (z2); for j = 1; 2 and M7;j = 
�1Fc0

j (z2) for j = 3; 4::; 8; (197)

M8;j = F b
j (z2); for j = 1; 2 and M8;j = �2nRc


�5Fb
j (z2) for j = 3; 4::; 8: (198)

Note that in arriving at the speci�c form of matrixM , which is nonsingular in the asymptotic

limit of RT ! 1, we needed to multiply each of the original boundary conditions by

appropriate scale factors involving 
. Once solution Z = M�1S is found to (184), the

quantities an(z0) and bn(z0) can be written in terms of Z as:

an(z0) = 
�1
(
F a
1 (z0)Z1 + F a

2 (z0)

 
Z2 + 
e�W2(zII)

8X
k=1

H2;kRk

!)

+
�1
5X

j=3

F a
j (z0)Zj + 
�1

8X
j=6

F a
j (z0)

 
Zj + e�Wj(zII)

8X
k=1

Hj;kRk

!
; (199)

bn(z0) = 
�1
(
F b
1(z0)Z1 + F b

2(z0)

 
Z2 + 
e�W2(zII)

8X
k=1

H2;kRk

!)

+
�2nRc


6

5X
j=3

F b
j (z0)Zj +

�2nRc


6

8X
j=6

F b
j (z0)

 
Zj + e�Wj(zII)

8X
k=1

Hj;kRk

!
: (200)

In terms of an(z0) and bn(z0), as shown in Appendix A, the interfacial deformation coe�cient

dn = �
an(z0) +

m�
�
bn(z0)

T 00 +mc0
0(z0)

; (201)

and the radial segregation coe�cient

bsn(z0) = dn
�

�

�
kc0

0

(z0)� c0
0

s (z0)
�
+ kbn(z0): (202)

Recall that the function eWj re
ects the common exponential part of the growth for

the functions F a
j , F

b
j and F c

j . As discussed earlier, and shown explicitly in appendix B, for

RT >> jRcj, with RT >> 1, eWj for j = 3; 4; 5 decreases exponentially at a large rate with
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and

Gk;j = 
�(k�3)e�Wj(zII)
d(k�3)

dz(k�3) z=zII
F c
j for k = 3; 4; ::8: (180)

Note that in arriving at (172)-(180), we had to scale the original continuity equations with

appropriate powers of 
. Further, we scaled the unknown X with eWj(zII). These steps are

necessary to ensure that the limiting G as RT ! 1 (i.e. 
 ! 1) is non-singular and

free of transcendental terms in RT .

Denoting

H = G�1; (181)

it is clear that we can then write for j = 1; 2,

~Cj = Cj + 
e�Wj(zII)
8X

k=1

Hj;kRk; (182)

while for j = 3,..8, we have

~Cj = Cj + e�Wj(zII)
8X

k=1

Hj;kRk: (183)

We satisfy (125), (126), (130) and (131) at z = z0 and (114)-(117) at z = z2, which on using

(182) and (183), is equivalent to the matrix relation

MZ = S; (184)

whereM is a 8� 8 matrix, while Z and S are each column vectors with eight entries. These

are de�ned such that

Z = ( ~C1; C2; ~C3; ~C4; ~C5; C6; C7; C8)
T ; (185)

S = (0; 0; ��1n �3e
��n(z0�zI ); 0; 0;�
anp(z2);�
5cnp(z2);�
4c0np(z2);�
b0np(z2))T

+ (P1; P2; P3; P4; P5; P6; P7; P8)
T ; (186)

where for 1 � l � 4,

Pl = �
Ml;2e
�W2(zII)

8X
j=1

H2;jRj �
8X

k=6

Ml;ke
�Wk(zII)

8X
j=1

Hk;jRj (187)

and for 5 � l � 8,

Pl = 
Ml;1e
�W1(zII)

8X
j=1

H1;jRj +
5X

k=3

Ml;ke
�Wk(zII)

8X
j=1

Hk;jRj: (188)

The elements of the matrix M can be written as

M1;j = 
�2F c
j (z0); for j = 1; 2 and M1;j = Fc

j (z0) for j = 3; 4::; 8; (189)
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Despite di�ering asymptotics in di�erent regimes, at this stage we prefer to think of

relations (146)-(152) as exact. The only aspects of the asymptotic results of Appendix B in

di�ering regimes that will be used in this part of our analysis is that in all cases,

(i) Each of F c
j , F

b
j and F

a
j have a common exponential part eWj(z) multiplied by an algebraic

dependent term that depend on superscript a, b or c. For instance, when �2njRcj << 
5,

W1 = p1(z�z0); W2 = p2(z�z2); Wj = 
j(z�z0) for j = 3; 4; 5 Wj = 
j(z�z2) for j = 6; 7; 8

(171)

(ii) The variation in z of eWj for j = 3; 4::8 is much larger than the variation of the algebraic

prefactors when RT >> 1, while for �n >> 1, the variation of the exponential part eWj

for j = 1; 2 dominate the variation of the prefactors.

(iii) For j = 1; 3; 4; 5, Re W 0

j > 0, while for j = 2; 6; 7; 8, Re W 0

j < 0.

(iv) The choice of the constants Cj and ~Cj and the prefactors is such that Wj(z0) = 0 for

j = 1; 3; 4; 5, while Wj(z2) = 0 for j = 2; 6; 7; 8.

As a consequence of the above properties, it is clear that for large RT , we have each of

F c
j (z0), F

a
j (z0) and F b

j (z0) will be exponentially small in RT for j = 6; 7; 8, while F c
j (z2),

F a
j (z2) and F

b
j (z2) are exponentially small in RT for j = 3; 4; 5. Again for �n >> 1, each of

F a
2 (z0), F

b
2 (z0) , F

c
2(z0), F

a
1 (z2), F

b
1 (z2) and F

c
1 (z2) is exponentially small in �n. These facts

will be needed later in simplifying matrix equations.

The continuity of an and its �rst derivative, cn and its �rst �ve derivatives can be written

as the following matrix relation

GX = R; (172)

where G is a 8 � 8 matrix, X and R are column vectors with 8 entries. These are de�ned

such that for j = 1; 2,

Xj = 
�1( ~Cj � Cj)e
Wj(zII); (173)

Rj =
d(j�1)

dz(j�1) z=zII
anp; (174)

Gk;j = e�Wj(zII)
d(k�1)

dz(k�1)
jz=zII F a

j for k = 1; 2 ; (175)

and

Gk;j = 
�(k�2) e�Wj(zII)
d(k�3)

dz(k�3)
jz=zII F c

j for k = 3; 4; ::8: (176)

For j = 3,...8,

Xj = ( ~Cj � Cj)e
Wj(zII); (177)

Rj = 
8�j
d(j�1)

dz(j�1)
jz=zII cnp ; (178)

Gk;j = 
�1e�Wj(zII)
d(k�1)

dz(k�1)
jz=zII F a

j for k = 1; 2 ; (179)
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anp is general is a complicated expression, given in the appendix. We will not need the

general expression in what follows except to not that in the special case when �4n << RT ,

the general expression simpli�es such that

anp � ��
5
n[�q1T 0 + q2]

�2nRT + �6n
� �5nq1T

00RT

�[�2nRT + �6n]
2
� �2nRch(z)

L2[�D�1]

"
cnp +

c0np

L2[�D�1]

#
; (163)

where

L2[y] = D(y2 � �2n) + y:

For 
5 >> �2njRcj (�n unrestricted otherwise),

F a
1 � ep1(z�z0) F a

2 � ep2(z�z2); (164)

F a
j � � 
2


2j � �2n
e
j(z�z0) for j = 3; 4; 5 ; (165)

F a
j � � 
2


2j � �2n
e
j(z�z2) for j = 6; 7; 8 : (166)

The asymptotic form of bnp is simply obtained by using

bnp = �anp �L3[cnp] (167)

For 
5 >> �2njRcj, The independent homogeneous solutions for bn have the asymptotic

behavior

F b
1 � � ep1(z�z0) ; F b

2 � � ep2(z�z2) ; (168)

F b
j � �e
j(z�z0)
DL1[
̂j ]


̂jL2[
̂j]
h(z) + :: for j = 3; 4; 5 ; (169)

F b
j � �e
j(z�z2)
DL1[
̂j ]


̂jL2[
̂j]
h(z) + :: for j = 6; 7; 8 ; (170)

where


̂j = 
j �
1

D

These asymptotic results for a special case will be used later in obtaining concrete ex-

pressions for quantities of interest. It is to be noted that the asymptotic expressions (155),

(156), (165), (166), (169), (170) become invalid when j�2nRcj is the same order as 
5 or larger.

This can occur even for Rc << R
5=6
T provided �n is large enough. In Appendix B, section

2, we derive more general expressions for the solution of the homogeneous equation will be

uniformly valid for all �n provided RT << Rc. The expressions (155), (156), (165), (166),

(169) and (170) will have to be replaced by these expressions. The remaining asymptotic

relations (153), (154), (163), (164), (167) and (168), however, remain valid in this range of

parameters.
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bn =
2X

j=1


�1 ~CjF
b
j +

�2nRc


6

8X
j=3

~CjF
b
j (152)

In appendix B, we derive asymptotic representation for each of F c
j , F

a
j , F

b
j , cnp , anp

and bnp for large RT that is uniformly valid for all �n, provided jRcj << RT . We also

derive simpler expressions for the special case RT >> 1 with 
5 >> �2nRc and this

latter expressions will be quoted here as these are the only ones needed in obtaining concrete

results for jRcj << R
5=6
T .

In the special case, �2njRcj << 
5, the leading order asymptotic behavior is given by:

cnp � �n[�q1T 0 + q2]

[�2nRT + �6n]
� �5nq1T

00

�[�2nRT + �6n]
2
; (153)

F c
1 � p1

D
ep1(z�z0) F c

2 � p2

D
ep2(z�z2); (154)

F c
j � e
j(z�z0) for j = 3; 4; 5 ; (155)

F c
j � e
j(z�z2) for j = 6; 7; 8 ; (156)

where p1 and p2 are given by

p1;2 = � 1

2D
�
s

1

4D2
+ �2n: (157)

Also, 
j for j =3 to 8 are the six independent roots of

L1[
j]L3[
j ]� �2nRT = 0; (158)

where

L1[y] = y2 � �2n;

L3[y] = (y2 � �2n)
2 +

y

�
(y2 � �2n):

The roots of (158) are labelled such that for RT >> �4n,


j � 
!j (159)

where

!3 = �ei�=3 = �!8 (160)

!4 = �1 = �!7 (161)

!5 = �e�i�=3 = �!6 (162)
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L1an = ��2nRTcn for z0 < z < zII : (145b)

The boundary conditions are (125), (126), (130) and (131) at z = z0 and (114)-(117) at

z = z2. In addition, we require that an and its �rst derivative, bn and its �rst derivative

and cn and all its �rst three derivatives are all continuous at z = zII . From (103), this is

equivalent to requiring that an and its �rst derivative, cn and its �rst �ve derivatives are

all continuous at z = zII . These are enforced on a suitable representation of the general

solution, as will be discussed shortly.

Since (143a) is an eighth order non homogeneous linear equation, we can express the

general solution for zII < z < z2 in the form

cn = cnp(z) +
2X

j=1


�7CjF
c
j (z) +

8X
j=3


�5CjF
c
j (z); (146)

where cnp(z) is a particular solution to (143a), F c
j are eight independent solutions to the

homogeneous equation (143b) and


 = �1=3n R
1=6
T : (147)

Factors containing powers of 
 in (146) can be absorbed as part of arbitrary constant Cj

by suitable rede�nition. We choose not to do so for we want to explicitly show the RT scaling

of the eventual answer. With our choice of Cj, it will turn out Cj = O(1) as RT ! 1.

Questions of determination of functions F c
j and cnp will be set aside for the moment. Once

cn is obtained, expression for an and bn be found, at least in principle from (144), (145) and

(103). We write these symbolically in the form

an = anp(z) +
8X

j=1


�1CjF
a
j (z) ; (148)

bn = bnp +
2X

j=1


�1CjF
b
j (z) +

�2nRc


6

8X
j=3

CjF
b
j (z) ; (149)

where F a
j , F

b
j are related to F c

j ; while particular solutions anp and bnp are determined in

terms of cnp .

For z0 < z < zII , i.e. in the insulated zone, we write

cn =
2X

j=1


�7 ~CjF
c
j +

8X
j=3


�5 ~CjF
c
j (150)

an =
8X

j=1


�1 ~CjF
a
j (151)
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�2 = � �sm�(T
00

s � T 00)(1 + e�2�nz0)

��(mc0
0

(z0) + T 00)(1 � e�2�nz0)
(133)

�3 = �
�s
n
(q1sT

0
s (zI)� q2s)(1 + e�2�nzI )� 2(q1sT1 � q2s)e

��nzI � q1s
�n
T 00

s (1 + e�2�nzI )
o

�[1� e�2�nz0]
;

(134)

m1 = �4 + X̂2�5; (135)

m2 = �6 + X̂2�7: (136)

In the above expressions,

�4 = �
k � 1

D
+
m
�
Ds

D
c0

00

s (z0) +
(k�1)

D
c0

0

(z0)� c0
00

(z0)
�

(T 00 +mc0
0(z0))

; (137)

�5 = �
Ds

�
mc0

0

s (z0) + kT 00
�

D(mc00(z0) + T 00)
; (138)

�6 =
�
�
Ds

D
c0

00

s (z0) +
(k�1)

D
c0

0

(z0)� c0
00

(z0)
�

� (T 00 +mc0
0(z0))

; (139)

�7 =
Ds�

�
kc0

0

(z0)� c0
0

s (z0)
�

D�(mc00(z0) + T 00)
; (140)

X̂2 =
p3 � p4e

z0(p4�p3)

1� ez0(p4�p3)
; (141)

p3;4 = � 1

2Ds

�
s

1

4D2
s

+ �2n; (142)

6 Determination of solution in the melt

From (102), (103) and (127), we get an eight order linear di�erential equation for cn :

h
L1L2L3 + �2nRcL1h(z) � �2nRTL2

i
cn = L2

h
��n[�q1T 0 + q2]

i
for zII < z < z2;

(143a)h
L1L2L3 + �2nRcL1h(z) � �2nRTL2

i
cn = 0 for z0 < z < zII: (143b)

Alternatively, instead of one equation for cn, we can write the following equations for cn and

an

h
L3L2 �D�2nRT + �2nRch(z)

i
cn + a0n = �D�n[�q1T 0 + q2] for zII < z < z2; (144a)

h
L3L2 �D�2nRT + �2nRch(z)

i
cn + a0n = 0 for z0 < z < zII ; (144b)

L1an = ��2nRT cn + �n[�q1T 0 + q2] for zII < z < z2; (145a)
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an(z0) + dn T
00(z0) = �m c0

0

(z0) dn � m
�

�
bn(z0) � d0 �

2
n dn; (121)

bsn(z0) + dn
�

�
c0s
0

(z0) = k bn(z0) + k dn
�

�
c0
0

(z0); (122)

�� a0n (z0)� � dn T
000(z0) = ��s a0sn (z0)� �s dn T

0
s

00

(z0); (123)

�Db0n(z0) � Ddn
�

�
c0
00

(z0)+(k�1)[bn(z0)+c00(z0)
�

�
dn] = �Dsb

0

sn (z0)�Dsdn
�

�
c0s
00

(z0): (124)

From (83) and (84), it follows that

cn(z0) = 0; (125)

c0n (z0) = 0: (126)

Before proceeding further, for purposes of reducing algebra, we simplify the equations

further by assuming that

(a) �, �=z2 , �s and �s=z2 >> 1

(b) d0 = 0

With the assumption (a) as above, we replace equations (104a,b) and (106a,b) by simpler

equations

L1 an = ��2n RT cn + �n [ �q1 T 0 + q2 ] for zII < z < z2 ; (127a)

L1 an = ��2n RT cn for z0 < z < zII ; (127b)

L1 asn = �n [ �q1s T 0
s + q2s ] for 0 < z < zI ; (128a)

L1 asn = 0 for zI < z < z0 ; (128b)

where

L1 =
d2

dz2
� �2n: (129)

The interfacial matching conditions (120)-(124) couple the concentration and temperature

�elds in the solid side to the melt variables. Using (105), (118), (119) and (128), expression

for asn and bsn can be obtained in terms of two arbitrary constants. By eliminating these

arbitrary constants between asn(z0), a
0

sn(z0) and bsn(z0), b
0

sn(z0), the matching conditions

(120)-(124) can be written as two e�ective boundary conditions at z = z0 on the melt

variables. As shown in Appendix A, these boundary conditions are

1

�n
a0n(z0) + �1an(z0) + �2bn(z0) =

�3

�n
e��n(z0�zI); (130)

b0n(z0) +m1bn(z0) +m2an(z0) = 0; (131)

where the e�ective interfacial parameters �1, �2, m1, m2 and �3 are de�ned as:

�1 = ��s(T
00

s +mc0
0

(z0))(1 + e�2�nz0)

�(mc00(z0) + T 00)(1 � e�2�nz0)
; (132)
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L2s bsn = 0; for 0 < z < z0 ; (105)

L1s asn = �n [ �q1s T 0
s + q2s ] for 0 < z < zI (106a)

L1s asn = 0 for zI < z < z0 (106b)

where

h(z) = e�(z�z0)=D; (107)

RT =
gT 00�

��
; (108)

Rc =
g�

D�

�
ci � c2

1 � e�(z2�z0)=D

�
(109)

and the di�erential operators

L1m =
d2

dz2
+

1

�

d

dz
� �2n ; L1s =

d2

dz2
+

1

�s

d

dz
� �2n; (110)

L2 = D
d2

dz2
+

d

dz
� �2n D; (111)

L3 =

 
d2

dz2
� �2n

!2

+
1

�

 
d2

dz2
� �2n

!
d

dz
; (112)

L2s = Ds

d2

dz2
+

d

dz
� �2n Ds: (113)

Note that since �=z2 >> 1, (34) holds and therefore T 00 is a constant. So the thermal

Rayleigh number RT de�ned in (108) is also a constant (Note the de�nition in terms of

dimensional variables as well in Table 2).

From (59)-(60), (81) and (82), we �nd that at the cylinder top,

an(z2) = 0; (114)

bn (z2) = 0; (115)

cn (z2) = 0; (116)

c0n (z2) = 0: (117)

The boundary conditions (63),(64) at the cylinder bottom imply

asn(0) = 0; (118)

bsn (0) = 0: (119)

At z = z0 , we �nd from (85)-(89) that

asn(z0) + dn T
0
s

0

(z0) = an(z0) + dn T
00(z0); (120)
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f1
0

=
1X
n=1

2

J 01(�n)
dn J1(�n r); (101)

where �n is the nth positive zero of the Bessel function J1 . Notice that this is a suitable

representation since

L J1(�n r) = ��2n J1 (�n r)

and the boundary conditions (55), (57), (79) and (80) are automatically satis�ed by each

mode. The representation of @T 1

@r
and @T 1

s

@r
in (96) and (99) may appear to contradict (56b)

and (58b). This is not the case since the convergence of the series in (96) and (99) for

z > zII and z < zI is only in the mean and not pointwise at r = 1. In this range of z,

there is a slow 1

n
decay of an and asn as n ! 1, which implies that one cannot calculate

the derivative of the series (96) and (99) term by term. Thus, it is not possible to plug the

series expressions directly into the di�erential equations and obtain the correct equations

for an and asn. Instead, we multiply each of (73), (75)-(78), (85)-(89) by r J1 (�n r) and

integrate with respect to r from 0 to 1. On integrating by parts, and using (55)-(58), (79),

(80), (90)-(95) and the following relations:

an (z) =
1

J 01(�n)

Z 1

0
dr r J1(�n r)

@T 1

@r
(r; z);

bn (z) =
�

� J 01(�n)

Z 1

0
dr r J1(�n r)

@c1

@r
(r; z);

cn (z) =
�

g � J 01(�n)

Z 1

0
dr r J1(�n r)  (r; z);

asn (z) =
1

J 01(�n)

Z 1

0
dr r J1(�n r)

@T 1
s

@r
(r; z);

bsn (z) =
�

� J 01(�n)

Z 1

0
dr r J1(�n r)

@c1s
@r

(r; z);

dn =
1

J 01(�n)

Z 1

0
dr r J1(�n r) f(r);

we obtain three ordinary di�erential equations for each n on the melt side and two ordinary

di�erential equations on the solid side. These equations can be written as

L2 bn = �2n Rc h(z) cn for z0 < z < z2 ; (102)

L3 cn = �an � bn for z0 < z < z2 ; (103)

L1m an = ��2n RT cn + �n [ �q1 T 0 + q2 ] for zII < z < z2; (104a)

L1m an = ��2n RT cn for z0 < z < zII; (104b)
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�� T 000 f1
0 � �

@

@z

@T 1

@r
= ��s T 0

s

00

f1
0 � �s

@

@z

@T 1
s

@r
; (88)

�D c0
00

f1
0 � D

@

@z

@c1

@r
+ (k � 1)

"
@c1

@r
+ c0

0

f1
0

#
= �Ds c

0
s

00

f1
0 � Ds

@

@z

@c1s
@r

: (89)

In addition to the above boundary conditions, elementary considerations of smoothness of

each of the variables T 1 , T 1
s , c1 , c1s and ~v1 in the neighborhood of r = 0 together

with consideration of axisymmetrical 
ow, leads us to conclude that as r ! 0 ,

 � t1 (z) r; (90)

@T 1

@r
� t2(z) r; (91)

@T 1
s

@r
� t3(z) r; (92)

@c1

@r
� t4(z) r; (93)

@c1s
@r

� t5(z) r; (94)

f1
0 � constant r (95)

for some functions t1 through t5 , their precise form being unimportant.

5 Series representation of solution

The problem (equations (73), (75)-(78)) in conjunction with (55)-(60), (63), (64), (79)-(89)

and assumptions (90)-(95) completely determine each of the unknown functions @
@r
T 1 , @

@r
c1 ,

@
@r
T 1
s , @

@r
c1s and  as functions of r and z and f1

0

as a function of r.

We expand each of the variables

@T 1

@r
=

1X
n=1

2

J 01(�n)
an (z) J1(�n r); (96)

@c1

@r
=

�

�

1X
n=1

2

J 01(�n)
bn (z) J1(�n r); (97)

 =
g�

�

1X
n=1

2

J 01(�n)
cn (z) J1(�n r); (98)

@T 1
s

@r
=

1X
n=1

2

J 01(�n)
an (z) J1(�n r); (99)

@c1s
@r

=
�

�

1X
n=1

2

J 01(�n)
bn (z) J1(�n r); (100)
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where the di�erential operator L is de�ned such that

L u =
@

@r

(
1

r

@(r u)

@r

)
: (74)

On taking the partial derivative of each of equations (46) and (47) with respect to r , we

obtain

� @

@z

@T 1

@r
+ T 00 L  = �

 
L +

@2

@z2

!
@T 1

@r
; (75)

� @

@z

@c1

@r
+ c0

0 L  = D

 
L +

@2

@z2

!
@c1

@r
: (76)

On taking partial derivative of (51) and (52) with respect to r, we get

� @

@z

@T 1
s

@r
= �s

 
L +

@2

@z2

!
@T 1

s

@r
; (77)

� @

@z

@c1s
@r

= Ds

 
L +

@2

@z2

!
@c1s
@r

: (78)

The boundary conditions (53) and (54) imply that without any loss of generality,

 (1; z) = 0; (79)

L  (1; z) = 0; (80)

while the boundary conditions (61),(62), (69) and (70) imply that

 (r; z2) = 0; (81)

@ 

@z
(r; z2) = 0; (82)

 (r; z0) = 0; (83)

@ 

@z
(r; z0) = 0: (84)

Further on taking the tangential derivative (i.e. derivative with respect to r ) of each of the

equations (65)-(68), we obtain

@T 1
s

@r
+ f1

0

T 0
s

0

=
@T 1

@r
+ f1

0

T 00; (85)

@T 1

@r
+ f1

0

T 00 = �m c0
0

f1
0 � m

@c1

@r
+ d0 L f1

0

; (86)

@c1s
@r

+ f1
0

c0s
0

= k
@c1

@r
+ k f1

0

c0
0

; (87)
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The boundary conditions at the top z = z2 are

T 1 = 0; (59)

c1 = 0; (60)

u1 = 0; (61)

w1 = 0; (62)

and at the bottom, z = 0 ,

T 1
s = 0; (63)

c1s = 0: (64)

On the original interface z = z0 , (20) implies

T 1
s + f1 T 0

s

0

= T 1 + f1 T 00 = �m c0
0

f1 � m c1 + d0

�
f1

00

+
1

r
f1

0

�
: (65)

From (21)-(25), we get

c1s + f1 c0
0

s = k c1 + k f1 c0
0

; (66)

�� T 000 f1 � �
@T 1

@z
= ��s T 0

s

00

f1 � �s
@T 1

s

@z
; (67)

�D c0
00

f1 � D
@c1

@z
+ (k � 1)

h
c1 + c0

0

f1
i
= �Ds c

0
s

00

f1 � Ds

@c1s
@z

; (68)

w1 = 0; (69)

u1 = 0; (70)

respectively. We can eliminate pressure from (48) and (49). Also, from (50), it follows that

~v1 = (u1; w1) = curl ~A for some vector �eld ~A that can be chosen to be divergence free. For

the axisymmetric 
ow under consideration ~A can be reduced to a scalar `stream function'

 so that the velocity components of ~v1 can be written as

u1 = �@ 
@z
; (71)

w1 =
1

r

@(r )

@r
: (72)

Then, from (47) and (48), we get

� @

@z

 
L +

@2

@z2

!
 = �

 
L +

@2

@z2

!2

 + g [�
@T 1

@r
+ �

@c1

@r
]; (73)
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Substituting these into (1-4), (6) and (7), and equating the � terms in the resulting equations,

� @T 1

@z
+ w1 T 00 = � r2 T 1; (46)

� @c1

@z
+ w1 c0

0

= D r2 c1; (47)

�@u
1

@z
= � @p1

@r
+ � r2 u1 � �

r2
u1; (48)

�@w
1

@z
= � @p1

@z
+ ( � T 1 + � c1) g + � r2 w1; (49)

1

r

@

@r
(ru1) +

@

@z
w1 = 0: (50)

On the solid side, we have

�@T
1
s

@z
= �s r2 T 1

s ; (51)

�@c
1
s

@z
= Ds r2 c1s: (52)

We note that in this coordinate system, the operator r2 is given by

r2 =
@2

@r2
+

1

r

@

@r
+

@2

@z2
:

The boundary conditions on r = 1 for z0 < z < z2 are

u1 = 0; (53)

@w1

@r
= 0; (54)

@c1

@r
= 0; (55)

@T 1

@r
= 0 for z0 < z < zII; (56a)

@T 1

@r
+ q1 T

0 = q2 for zII < z < z2: (56b)

On r = 1 for 0 < z < z0 , from (12)-(13), we have the boundary conditions

@c1s
@r

= 0; (57)

@T 1
s

@r
= 0 for z0 > z > zI; (58a)

@T 1
s

@r
= � q1s T

0
s + q2s for zI > z > 0: (58b)

10



each of which is a linear function of z. In addition, when (z2 � z0) >> D, St << �=z2,

St << �s=z2 and Ds << z0, (conditions that appear to be valid in some experiments),

the matching conditions imply that the interfacial concentration

ci �
1

k
c2; (36)

z0 � z2

(
1 +

�(1 + m
k
c2)

�s(�m
k
c2 � T1)

)
�1

: (37)

Notice that the quantity
1+m

k
c2

�
m
k
c2�T1

is the ratio of the temperature di�erence between the

top and the interface and the temperature di�erence between the interface and the bottom.

Clearly, by controlling the location of the insulation zone, z0 can be made to lie between

z = zI and z = zII, as will be assumed here.

Until we get to a discussion of the concrete formulae (212) and (213) for interfacial shape

and radial segregation in sections 6 and 7, the only simpli�cation that will be used is that

each of T 0 and T 0
s is a linear linear functions of z as in (34) and (35), since �=z2 and �s=z2

are assumed large. Otherwise, the analysis will proceed with the assumption that each of

c0, T 0, c0s and T
0
s are known from (26)-(32).

4 Perturbed Steady state for nonzero �

Now consider a small nonzero � . In this case, the dependent variables can no longer just

depend on z . As is well known, the presence of a radial thermal gradient means that the

quiescent state is no longer a steady state solution to the problem. We express solutions as

a perturbation expansion in powers of � :

T = T 0 + � T 1 + ::; (38)

c = c0 + � c1 + ::; (39)

u = � u1 + ::; (40)

w = �1 + � w1 + ::; (41)

p = p0 + � p1 + ::; (42)

Ts = T 0
s + � T 1

s + ::; (43)

cs = c0s + � c1s + ::; (44)

f = z0 + � f1 + ::: : (45)

9



is a simple solution to the above equations in which the melt velocity ~v = � ~z and the

melt-solid interface is planar, i.e. f = z0 , a constant. The temperature and concentration

�elds in this case are denoted by a superscript 0 as they are the leading term of an expansion

for small � . They are given by

T 0 = Ti +

�
e�

(z�z0)

� � 1

�
1 � Ti

e�
1
�
(z2�z0) � 1

; (26)

c0 = ci +
�
e�

1
D
(z�z0) � 1

� c2 � ci

e�
1
D
(z2�z0) � 1

: (27)

On the solid side, z0 > z > 0 ,

T 0
s = Ti +

�
e
�

1
�s

(z�z0) � 1
� T1 � Ti

e
1
�s

z0 � 1
; (28)

c0s = k ci +
�
e�

1
Ds

(z�z0) � 1
� c2 � k ci

e
1
Ds

z0 � 1
; (29)

where ci is the concentration value on the melt side of the interface and Ti is the interfacial

temperature. To determine the three constants Ti , ci and z0 , we use the boundary

conditions (20), (22) and (23) which in this case simpli�es to

Ti = � m ci; (30)

1 � Ti

e�
1
�
(z2�z0) � 1

=
T1 � Ti

e
1
�s

z0 � 1
+ St; (31)

ci �
c2 � ci

e�
1
D
(z2�z0) � 1

= k ci �
c2 � k ci

e
1
Ds

z0 � 1
; : (32)

In this case, the pressure p = p0(z) is hydrostatic and satis�es

dp0

dz
= � g T 0 + � g (c0 � c2): (33)

Note that all other equations and boundary conditions are trivially satis�ed by the solutions

(26)-(29) and (33) provided they satisfy (30)-(32).

An important limiting case (valid in many experiments) is that �=z2 >> 1, �s =z2 >> 1.

This simpli�es expression for T 0 and T 0
s as

T 0 � �mci +
(z � z0)

z2 � z0
(1 +mci); (34)

T 0
s � �mci �

(z � z0)

z0
(T1 +mci); (35)
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The continuity of heat 
ow implies that

T ~v � n̂ � �
@T

@n
= �Ts ẑ � n̂ � �s

@Ts

@n
+ St ~v � n̂; (22)

where n̂ denotes a unit vector normal to the melt-solid interface pointing towards the liquid,

and @
@n

denotes component of gradient in that direction, St is the nondimensional latent heat

(Stefan number). From the conservation of solute concentration across the interface, we must

have

c ~v � n̂ � D
@c

@n
= �cs ẑ � n̂ � Ds

@cs

@n
: (23)

Further, from integrating (4) over a small control volume centered about a point on the in-

terface, it follows that normal velocity is continuous when the di�erence of densities between

the melt and the crystal is neglected. Thus,

~v � n̂ = � ẑ � n̂: (24)

Di�erence of densities between solid and liquid side of the interface can be accommodated

by including an additional � (�s��)

�
ẑ � n̂ term on the right hand side of (24); however, here

we will be primarily interested in situations where this is not important. Further, at the

interface, if we assume a no-slip condition for the 
uid 
ow relative to the solid, then

u+ (w + 1)f 0 = 0: (25)

While the no-slip condition (25) at the melt-solid interface seems to be widely used in

the literature, we are unaware of any convincing physical argument this is superior to a

no tangential stress boundary condition. It may be pointed out that unlike the case of

a 
uid next to a solid where good experimental evidence exists for the no-slip boundary

condition, the liquid molecules in this case do not preserve their identity as it goes through a

phase transition. Nonetheless, despite this uncertainty, we �nd that the asymptotic scalings

and parameter dependence presented later in this paper remain the same with a no-stress

boundary condition, only the scaling constants di�er.

Note that the mathematical model with equations (1)-(4), (6), (7) and boundary and

interfacial conditions (8)-(25) contain twenty irreducible nondimensional parameters D, Ds,

�, �s, �g, �g, �, z2, zI , zII, �q1, �q1s, �q2, �q2s, c2, T1, d0, m, k and St. The relation of the

less standard parameters in this list with the conventional Peclet number, Prandtl number,

Reynolds number, etc. is given in Table 2.

3 Steady state for zero epsilon

Despite the complexity of the general equations, there exists well known simple solutions to

the above equations, as determined originally by Tiller et al1. If � = 0 , a quiescent state

7



Biot numbers related to heat transfer through the side walls in the melt and solid region

respectively. For instance, in equation (16) of the Adornato & Brown17 paper, the notation

Bi(z) with a speci�c choice of a piecewise constant pro�le, is related to the constants �q1s

and �q1, while Bi(z)�1(z) is related to �q2s and �q2s, provided we ignore the ampoule in

their model. The quantity � will be assumed small, while each of q1 and q2 assumed O(1).

� will be our perturbation parameter. The precise multiplicative decomposition of the Biot

number �q1 into q1 and � is unimportant since in the �nal results, only the product �q1

appears. The same is true for �q2 , �q1s and �q2s.

At the cylinder top, i.e. z = z2 , we have the nondimensional temperature

T = 1; (14)

c = c2; (15)

u = 0; (16)

w = �1; (17)

with c2 being assumed a constant. Similarly at the bottom, z = 0 , we get

Ts = T1; (18)

cs = c2; (19)

where T1 < 0 and assumed smaller than the nondimensional melting temperature at the

interface. Note that one can use more general boundary conditions than (19), however this

appears to be most relevant since in the limit of an in�nitely long cylinder, conservation of

mass dictates that the concentration should be the same at z = �1 .

Now comes the boundary conditions on the solid melt interface z = f(r) . We will

assume local thermodynamic equilibrium since the relaxation time of the departure from

equilibrium can safely be assumed to be much smaller than the typical time scales in this

problem. Thus, at the interface, we satisfy the melting condition given by the solidus-

liquidus line with the incorporation of the Gibbs-Thompson e�ect (i.e. lowering of the

melting temperature in the presence of curvature e�ects)

T = Ts = � m c + d0

8<
: f 00

(1 + f 0
2)

3=2
+

1

r

f 0

(1 + f 0
2)

1=2

9=
; : (20)

Further, from the solidus liquidus line, we must have

cs = k c: (21)

6



On the crystal side, since there is no 
uid motion and so

~v = � ẑ: (5)

Thus the equations for temperature and concentration �elds are given by

� @ Ts

@z
= �s r2 Ts; (6)

� @ cs

@z
= Ds r2 cs: (7)

Now comes the boundary conditions. Denoting the r and z components of ~v by (u;w) ,

we take the boundary condition on 
uid velocity components at the sidewalls r = 1 as

u = 0; (8)

@w

@r
= 0: (9)

Equation (9) is a no-stress condition. A no slip condition w = �1 would be more realistic;

however, we could �nd no simple basis representation of the solution in this case. We suspect

that aside from the changing the nature of a boundary layer near r = 1, the change of this

boundary condition will be have no global e�ect on crystal shape and radial segregation, at

least in the limit of large Rayleigh number.

The condition of no mass 
ux through the side walls imply

@c

@r
= 0: (10)

Also, the condition of heat 
ux imply

@T

@r
= 0 for f(1) < z < zII ; (11a)

@T

@r
+ � q1 T = � q2 for zII < z < z2: (11b)

On the solid side, at r = 1 ,
@cs

@r
= 0; (12)

@Ts

@r
= 0 for f(r) > z > zI; (13a)

while
@Ts

@r
+ � q1s Ts = � q2s for zI > z > 0: (13b)

Each of �q1 , �q2 , �q1s and �q2s will be taken as constants that characterize the heat

transfer through the side walls. In the common engineering literature, �q1 and �q1s are
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unscaled, as it is already nondimensional. Given the fair amount of algebraic manipulation,

we prefer to use this set of parameters as it keeps the equations looking simpler. O� course,

in the common Engineering literature, it is common to express these quantities in terms of

Peclet number Pe, Reynolds number Re, Prandtl number Pr, etc. For the bene�t of the

readers, we have prepared Table 2 that expresses our non-standard parameters in terms of

the more well-known dimensionless numbers. In section 7, we also discuss our results using

the more standard notation to bene�t the reader who is more interested in the concrete

results than in the analysis.

Using the nondimensional variables in Table 1, the top end of the cylinder, corresponding

to z = z2, is maintained at nondimensional temperature T = 1 and the bottom end is

maintained at temperature T1 with T1 < 0 . The temperature gradient is assumed

strong enough to avoid constitutional supercooling. The heat is allowed to 
ow through

the sides of a cylinder for z2 > z > zII in the melt zone and 0 < z < zI in the

crystallized zone. The heat transfer across the side walls is such that the 
uid velocities are

slow and the interface deformation from a planar interface is small. The precise limitations

placed on the size of the heat transfer by this assumption will be examined later in section

6. For the present, it su�ces to assume that heat transfer is su�ciently small. We introduce

a cylindrical coordinate system (r; z) where r is the radial direction. No azimuthal

angular variable is necessary as the 
ow variables are assumed to be axi-symmetric. The

mathematical equations for the steady solution in the melt are

~v � r T = � r2 T; (1)

~v � r c = D r2 c; (2)

~v � r ~v = � rp + f�T + � (c� c2) g g ẑ + � r2 ~v; (3)

r � ~v = 0; (4)

where T denotes the nondimensional temperature, c the concentration of solute (one of

the components) relative to the total (measured in molar fraction) and ~v is the relative

melt velocity (see Table 1) and � denotes the nondimensional kinematic viscosity (i.e

inverse Reynolds number based on Ua). In equations (3) and (4), we have invoked the usual

Boussinesq approximation, where the density variation due to change in temperature and

concentration from reference values are included only in the forcing term on the right hand

side of (3). Here, � ( > 0) and � are the non-dimensional coe�cients of volumetric

expansion due to increased T and c respectively. When the solute density is smaller than

the alloy, � > 0. However, there is no restriction on the sign of � in our current analysis.
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modifying the no-slip boundary condition at the cylinder side walls, we �nd a modal rep-

resentation for each of the stream function, radial temperature and concentration gradient

in the melt that decouples each modes and reduces the problem to a set of �nite ordinary

di�erential equations for each mode. By making use of general expressions for the perturbed

temperature and concentration �elds in the solid, we �nd that the interfacial conditions can

be expressed in terms of e�ective boundary conditions on the melt variables at the original

planar interface. With the e�ective boundary conditions on a planar interface, we solve the

linearized melt equations and �nd explicit expressions for interfacial deformation and radial

segregation in the asymptotic limit of large thermal Rayleigh number RT . Among other

things, we �nd that there is a boundary layer near the interface that scales as R
�1=6
T , where

each of the solutal, thermal and 
uid velocity �eld change rapidly. The radial derivative of

the temperature �eld and the radial segregation in the crystal, each scale as R
�1=6
T , provided

jRcj << R
5=6
T . The coe�cient of R

�1=6
T in each scale decreases exponentially with the dis-

tance of the interface from the end of the insulation zone in the solid side. In a certain range

of parameters, consistent with many experimental conditions, our results suggest that radial

dependence of the interface shape and concentration will be roughly given by the Bessel func-

tion J0(�1r), where �1 is the �rst positive root of J
0

0(�n) = 0 (i.e. zero of J1). Further, we

�nd that in this case, the Coriell-Sererka (Coriell & Sererka22) hypothesis of proportionality

between interface slope and radial segregation is approximately valid, though the constant

of proportionality is di�erent from what these authors �nd with di�usion only. In this case,

we also point out a speci�c condition on heat transfer near the solid end of the insulation

zone, which when satis�ed, will result in minimal interfacial slope and radial segregation for

large RT .

2 Mathematical Model

In a Bridgman apparatus (Fig. 1), a binary melt is contained in a cylindrical container

of radius a that is translated downwards with constant velocity �Ua ẑ , where ẑ is a

unit vector along the axis of the cylinder that opposes gravity, as shown in Figure 1. The

concentration of solute (one of the two components of the binary mixture) at the top of the

cylinder ~z = ~z2 is c = c2. The top of the cylinder is maintained at temperature ~T = ~T2,

while the bottom of the cylinder is at temperature ~T = ~T1, which is signi�cantly smaller

than the melting temperature ~T0 of a planar interface. The density of the melt is assumed

to be ~� = ~�0 at temperature ~T0 and concentration c2. This will be the reference density. We

scale all lengths by a, all time scales by a=Ua, all mass scales by ~�0a
3 and all temperatures

by ~T2� ~T0, leaving us with non-dimensional quantities of Table 1. Concentration will remain

3



suggest among other things that the classic one-dimensional modelling through the Scheil

equation20 is an oversimpli�cation since it assumes complete and through mixing all over

the 
uid. It is known for instance that between the di�usive limit, where convection can be

totally neglected and the thoroughly mixed limit for which Scheil's equation applies, there is

an imperfect mixing zone at moderately large Rayleigh number. In this range, radial segre-

gation and the interface deformation are larger than at very large Rayleigh number. Indeed,

it was pointed out that reduction of gravity by a factor of 103 � 104 compared to earth

may be detrimental to growing a crystal of uniform composition. Despite such advances in

theoretical understanding, it is di�cult from numerical results alone to get a global under-

standing of the parameter dependences since there are so many of them (See Table 1). The

trends in a certain subset of parameter space need not re
ect the trend in other ranges of the

parameter space. Thus, there is need for analytical results, which is likely to be of limited

validity; nonetheless it can be complimentary to numerical calculations.

The only analytical work that we are aware of that is relevant to convection in the

Bridgman apparatus is due to Brattkus & Davis21. They analyzed a two dimensional model

where the vertical dimension is far larger than the horizontal dimension and the heat 
ux

through the side walls is assumed small. Brattkus & Davis21 speci�cally concluded there

was no necessary relation between radial segregation and interfacial shape, a hypothesis put

forward by Coriell & Sererka22 based on di�usion alone. The numerical results of Brown and

his coworkers, on the other hand, suggests a strong correlation between the two. However,

the Brattkus-Davis analysis ignores the insulation zone shown in Figure 1. This insulation

zone length is known to be an important parameter from prior numerical work (see Chang

& Brown16, for instance).

Here we consider steady state2 inside a vertical cylinder (Figure 1) between z = 0 and

z = z2, where z2 is assumed a constant. As in Brattkus & Davis21, the horizontal heat transfer

is assumed small enough so that both the 
uid velocities and the interfacial deformation are

small. Prior numerical work (Chang & Brown16 for instance) show that the latter assumption

is valid even for relatively intense convection. The 
uid velocity on the other hand has to

be small so that nonlinearities in Navier-Stokes equation can be ignored. This assumption is

clearly unrealistic in many experimental situations; however, as discussed in section 7, there

are reasons to believe that the results on radial segregation and interfacial deformation will

hold in part of the nonlinear regime as well.

The above assumptions allow us to linearize about a basic one dimensional state and

Taylor expand the interfacial boundary conditions about the original planar boundary. By

2In reality, this is a quasi-steady state (see Brown (1988)); however for purposes of this paper, we make
no such distinction.
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1 Introduction

In a vertical Bridgman apparatus, a cylindrical container (Fig. 1) containing a melt of a

binary alloy mixture is translated downwards from a hot to a cold zone so as to cause so-

lidi�cation. The uniformity of composition of the resulting crystal and the relative absence

of crystal defects are desirable features for technological applications. Ideally, these can be

achieved if convection is eliminated and the crystal-melt interface is planar. However, in

practice, this is di�cult to ensure. Considerations of constitutional supercooling (morpho-

logical instability) and the need to avoid transient e�ects due to container ends require a

relatively large temperature gradient. On the other hand, a completely one dimensional

imposed temperature gradient that would occur (Tiller et al1) when the cylinder sides are

insulated would require unrealistic large temperature di�erences between the two cylinder

ends given that the length of the cylinder has to be large enough to avoid transient e�ects.

Thus, one is forced to a con�guration where signi�cant heat 
ux occurs through the cylinder

sides. However, when this happens, 
uid next to the cylinder ends is hotter than the 
uid

at the center leading to convection for any value of the solutal or thermal Rayleigh num-

ber. The review by Brown2 discusses the Bridgman problem in great detail. Other review

papers3�5 deal with various aspects of directional solidi�cation in general.

There are many papers in the literature that address the problem of onset of convection

in �nite and in�nite geometries (see references 6-15 and references there in). In these cases,

the equations allow for a basic quiescent state (no 
uid 
ow) that is stable upto a certain

critical Rayleigh number. Such convection can be termed natural convection, as opposed

to the induced convection caused by heat transfer through the side walls of a Bridgman

apparatus. Since this paper concerns situations which in the absence of horizontal heat

transfer is a thermally stable con�guration, natural convection is not relevant in this context

unlike that of an otherwise thermally or solutally unstable arrangement where possibility

exists of a "resonant" response leading to vigorous convection.

There are many papers dealing with the Bridgman problem itself (see Brown, 1988 for

references). Nonetheless, the �rst set of fully consistent calculations that account for con-

vection in the 
uid, and its coupling with thermo-solutal �eld, heat di�usion in the solid

and a non-planar interface appear to be due to Chang & Brown16 and Adornato & Brown17.

By assuming a quasi-steady growth when the transient scale is small, they calculate the

nonlinear steady states numerically. Later on, these calculations were further extended by

Kim & Brown18 by including e�ects of heat transfer through an ampoule that surrounds the

cylinder in an experiment. Unsteady transient e�ects have also been studied by Brown &

Kim19 and these calculations are in good agreement with experiment. These calculations
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CONVECTION EFFECTS ON RADIAL SEGREGATION AND
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ABSTRACT

We analytically study the in
uence of convection caused by horizontal heat transfer

through the sides of a vertical Bridgman apparatus. We consider the case when the heat

transfer across the side walls is small so that the resulting interfacial deformation and 
uid

velocities are also small. This allows us to linearize the Navier-Stokes equations and express

the interfacial conditions about a planar interface through a Taylor expansion. Using a no

tangential stress conditions on the side walls, asymptotic expressions for both the interfacial

slope and radial segregation at the crystal-melt interface are obtained in closed form in

the limit of large thermal Rayleigh number. It is suggested that these can be reduced by

appropriately controlling a speci�c heat transfer property at the edge of the insulation zone

in the solid side.
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